The Scalar Curvature of the Tangent Bundle of a Finsler Manifold

نویسندگان

  • Aurel Bejancu
  • Hani Reda Farran
  • Darko Milinković
چکیده

Let Fm = (M,F ) be a Finsler manifold and G be the Sasaki– Finsler metric on the slit tangent bundle TM0 = TM {0} of M . We express the scalar curvature ρ̃ of the Riemannian manifold (TM0, G) in terms of some geometrical objects of the Finsler manifold Fm. Then, we find necessary and sufficient conditions for ρ̃ to be a positively homogenenous function of degree zero with respect to the fiber coordinates of TM0. Finally, we obtain characterizations of Landsberg manifolds, Berwald manifolds and Riemannian manifolds whose ρ̃ satisfies the above condition. Introduction The geometry of the tangent bundle TM of a Riemannian manifold (M, g) goes back to Sasaki [10], who constructed on TM a Riemannian metric G which in our days is called the Sasaki metric. Then, several papers on the interrelations between the geometries of (M, g) and (TM,G) have been published (see Gudmundsson and Kappos [6] for results and references). The extension of the study from Riemannian manifolds to Finsler manifolds is not an easy task. This is because a Finsler manifold F = (M,F ) does not admit a canonical linear connection on M , that plays the role of the Levi–Civita connection on a Riemannian manifold. Recently, the first author (cf. [3]) has initiated a study of the interrelations between the geometries of both the tangent bundle and indicatrix bundle of a Finsler manifold on one side, and the geometry of the manifold itself, on the other side. The main tool in the study was the Vrănceanu connection induced by the Levi–Civita connection on (TM0, G), where G is the Sasaki–Finsler metric on TM0. We study the geometry of a Finsler manifold F = (M,F ) under the assumption that the scalar curvature ρ̃ of (TM0, G) is a positively homogeneous function of degree zero with respect to the fiber coordinates (y) of TM0. In the first part 2010 Mathematics Subject Classification: Primary 53C60, 53C15.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the k-nullity foliations in Finsler geometry

Here, a Finsler manifold $(M,F)$ is considered with corresponding curvature tensor, regarded as $2$-forms on the bundle of non-zero tangent vectors. Certain subspaces of the tangent spaces of $M$ determined by the curvature are introduced and called $k$-nullity foliations of the curvature operator. It is shown that if the dimension of foliation is constant, then the distribution is involutive...

متن کامل

On Negatively Curved Finsler Manifolds of Scalar Curvature

In this paper, we prove a global rigidity theorem for negatively curved Finsler metrics on a compact manifold of dimension n ≥ 3. We show that for such a Finsler manifold, if the flag curvature is a scalar function on the tangent bundle, then the Finsler metric is of Randers type. We also study the case when the Finsler metric is locally projectively flat.

متن کامل

Para-Kahler tangent bundles of constant para-holomorphic sectional curvature

We characterize the natural diagonal almost product (locally product) structures on the tangent bundle of a Riemannian manifold. We obtain the conditions under which the tangent bundle endowed with the determined structure and with a metric of natural diagonal lift type is a Riemannian almost product (locally product) manifold, or an (almost) para-Hermitian manifold. We find the natural diagona...

متن کامل

Para-CR structures of codimension 2 on tangent bundles in Riemann-Finsler geometry

We determine a 2-codimensional para-CR structure on the slit tangent bundle T0M of a Finsler manifold (M,F ) by imposing a condition regarding the almost paracomplex structure P associated to F when restricted to the structural distribution of a framed para-f -structure. This condition is satisfied when (M,F ) is of scalar flag curvature (particularly constant) or if the Riemannian manifold (M,...

متن کامل

On Stretch curvature of Finsler manifolds

In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied.  In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every  (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011